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A continuous-time Monte Carlo (CTMC) algorithm with lists of neighbors and
local update (tree-type architecture) for simulating the dynamics and stationary pat-
tern formation of complex surface reaction mechanisms is discussed. Two additional
CTMC algorithms, often used in the literature, are also presented. The computational
efficiency of these CTMC algorithms is compared to a null-event algorithm for the
CO oxidation on a Pt(100) surface by direct numerical simulations. Furthermore,
we have derived simple formulas for the real time advanced using the null-event
algorithm and the CTMC with local update algorithm for the infinitely fast and finite
CO oxidation kinetics as well as a unimolecular surface reaction. We have found
that the proposed CTMC algorithm with classes and local update can be much faster
than the traditional null-event algorithms by orders of magnitude, when stiffness
occurs (rare event dynamics). In addition, we address the computational accuracy of
Monte Carlo algorithms, due to limited resolution caused by finite lattice sizes, for
key intermediate species in a complex reaction mechanism. It is shown that surface
concentrations below the resolution of the lattice and corresponding reaction rates
can accurately be calculated through the use of a time-weighted average of reaction
rates. c© 2001 Academic Press

INTRODUCTION

Surface reactions are an important component in the design and optimization of
homogeneous–heterogeneous systems such as catalytic and chemical vapor deposition re-
actors. Traditionally, surface reactions have been modeled assuming a uniform distribution
of each species on the surface. This idealized situation is often envisioned for infinite
Fickian-type diffusion coefficients of all surface species. This mean field (MF) approxima-
tion does not take into account the stochastic nature of nucleation phenomena and spatial
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inhomogeneities associated with heterogeneous systems such as crystal defects and lateral
adsorbate–adsorbate interactions. In addition, any nonlinear rate term in a MF conservation
equation, such as the dissociative adsorption of a diatomic molecule on a surface or the
reaction rate of a bimolecular surface reaction, has an explicit dependence on the local mi-
croenvironment of atoms resulting in spatial micropatterns. These spatial inhomogeneities
render the MF approximation a poor representation of experimental findings. In order to
overcome this problem, Monte Carlo (MC) techniques are used on a lattice representing
the chemisorption sites of various species. MC simulations solve a master equation

d Pα
dt
=
∑
β

[WαβPβ −WβαPα], (1)

wherePα is the probability of the surface being in configurationα andWαβ is the transition
probability per unit time of the surface going from configurationβ to α. Given the large
number of possible configurations, Eq. (1) cannot be solved analytically for any real system.
As a result, methods such as MC are often implemented. This representation belongs to
the general class of interacting Ising particle systems (IPS) of nonequilibrium statistical
mechanics.

MC simulations are typically computationally intensive and thus, the implementation
algorithm can have important consequences for computational efficiency. The first group of
MC algorithms for surface reactions, introduced by Ziff and co-workers, used sites or pairs
selected at random and assumed that an event may occur or not (a null-event algorithm). This
algorithm is known as the ZGB method [1]. Following up on their pioneering work, many
studies have employed variations of the original algorithm to include additional mechanistic
steps [2–6]. Regarding specific reaction systems, thisnull-event algorithmhas been used
to model monomer–dimer reaction systems such as the CO oxidation by O2, monomer–
monomer surface reactions, dimer–dimer surface reactions, and more complicated reaction
mechanisms such as the CO methanation and the catalytic reduction of NO by CO [7–18].
A similar null-event, real-time algorithm was also used for a unimolecular surface reaction
[19, 20]. For an overview of many physical applications that have been modeled using MC,
see the review papers by Evans [21], Zhdanov and Kasemo [22, 23], Kang and Weinberg
[24], Jansen and Lukkien [25], Lombardo and Bell [26], and Nieminen and Jansen [27].
The latter reference has an overall review of ZGB algorithm modifications.

It turns out that the application of the null-event algorithms to more complicated reaction
schemes is nontrivial, and time is often presented in MC trials or steps. An exception to
this can be found for a unimolecular reaction [19, 20, 28]. However, the methods presented
there, based on unimolecular events only, cannot be directly applied to more complex kinetic
systems (e.g., theA2+ B2 reaction). Furthermore, real time is sometimes miscomputed [23,
29]. Modifications to the ZGB algorithm to reduce or eliminate null events have been pro-
posed and implemented to model CO oxidation [30–35]. These algorithms are a derivative
of the one proposed by Bortzet al., often referred to as the continuous-time MC method
(CTMC) or kinetic MC (KMC) method [36]. For spatially homogeneous reactions, related,
real-time MC algorithms were introduced long ago by Gillespie [37, 38]. A variation of
such an algorithm, discussed below, has proven to be computationally very efficient at low
temperatures in growth, etching, and equilibration of materials [39] over the most com-
monly used Metropolis algorithm [40]. This last algorithm has also been used to model a
unimolecular surface reaction coupled to a transport model in the adjacent gas-phase of a
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catalyst [41] and (with a lumping technique to handle numerical stiffness caused by partial
equilibrium situations) systems with detailed chemistry, such as hydrogen ignition [42].

In this paper, a general algorithmic framework is presented that is capable of handling
arbitrarily complex, detailed surface reaction mechanisms based on the CTMC method,
similar to the work of [30]. This feature is essential to replacing computational packages
based on MF approximations, such as Surface CHEMKIN, in large-scale reactor models
[43]. Because of the lack of real time in the ZGB algorithm, detailed comparison of the
computational efficiency of various algorithms is not straightforward. By introducing real
time in the ZGB algorithm and in general in null-event algorithms, a systematic comparison
of various CTMC and null-event algorithms is conducted here for two examples, the CO
oxidation on Pt and a unimolecular surface reaction. Numerical efficiencies are contrasted
with analytic formulas, derived here for the first time, regarding the real time advanced by
the null-event algorithm and the most efficient CTMC algorithm. Finally, issues related to
accuracy and finite size effects for intermediates found at low concentrations are discussed,
and an example from reactions in series is presented.

NULL-EVENT ALGORITHMS

Null-event algorithms depend to some extent on the specific reaction system studied. For
the presentation here, we start with the CO oxidation on platinum and follow this by the
unimolecular surface reactionA→ B.

Infinitely Fast CO Oxidation Kinetics

CO oxidation is a problem that has received considerable attention. The reaction mech-
anism considered is

CO(g)+∗ → CO∗

O2(g)+ 2∗ → 2O∗

CO∗ +O∗ → CO2(g),

where∗ denotes a vacant site or adsorbed species and g denotes a gaseous species. Gaseous
CO adsorbs onto the surface occupying a single site. Oxygen adsorbs dissociatively onto the
surface, requiring two adjacent sites. The surface reaction between a CO∗ and an adjacent
O∗ is fast, and the product CO2 desorbs readily from the surface.

The catalyst surface is modeled using a square lattice representing the Pt(100) plane
and periodic boundary conditions are employed (note that surface reconstruction is not
considered in this work). The algorithm introduced by Ziff and co-workers [1] is as follows.
A MC event consists of a microprocess (adsorption of CO or O2) being randomly selected.
The probability of picking the carbon monoxide microprocess is given by the gas-phase mole
fraction of carbon monoxideyCO. Similarly, the probability of picking oxygen adsorption is
given by the mole fraction of oxygen in the gas-phase, which for a binary mixture (assuming
yCO2 = 0) is (1− yCO). The rate constant of the surface reaction is considered to be infinitely
large. Upon selection of a CO adsorption microprocess, a site is selected at random. If the
site is occupied, then adsorption is unsuccessful, and the event ends (a null event). If the
site is not occupied, the CO molecule adsorbs, and the adjacent sites are randomly checked
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for the presence of an O∗. If an O∗ is found, the two species react, forming CO2, which
immediately desorbs. Upon selection of an oxygen adsorption event, two adjacent sites are
randomly selected. If either site is occupied, the adsorption is unsuccessful and the event
ends (a null event). Otherwise, the oxygen dissociatively adsorbs onto the surface, and the
adjacent sites are checked for CO∗. If any adjacent site is occupied with CO∗, the two
species react, forming CO2, which immediately desorbs.

Finite CO Oxidation Kinetics

The null-event ZGB algorithm can be extended to finite kinetics. First a lattice site is
randomly picked. If the site is empty, adsorption is attempted as discussed above, with a
probability that depends on the adsorption rate constants. If the site is occupied, a reaction
event is attempted. The execution of the surface reaction follows the same procedure as
the dissociative adsorption of O2; that is, once a site has been chosen, adjacent sites are
randomly checked for the complementary surface species. When a CO∗–O∗ pair is selected,
the event is successful with a probability that depends on the reaction rate constant,kr .

In our work, results from this algorithm have been compared to CTMC, and excellent
agreement was found. In the presence of finite, fast kinetics, i.e., a largekr compared to the
adsorption rate constants, the normalization constant of all probabilities is very high. As a
result, many unsuccessful adsorption events occur, resulting in poor efficiency of the null-
event algorithm. We will return to this point in a later section, where analytical formulas
for the real time advanced by various algorithms are discussed for various cases.

A Unimolecular Surface Reaction

Next we discuss an example of a unimolecular reaction of a single speciesA transforming
into B according to the overall scheme

A+∗ → A∗

A∗ → A+∗

A∗ → B+∗.

Attractive adsorbate–adsorbate interactions are considered in the desorption step. The
null-event algorithm has been outlined in [19, 20]. In brief, a random number is used to
select a lattice site. When the selected site is empty, an adsorption event is attempted with
probability proportional to the adsorption rate constant. When the occupied site (central
atom) is filled, the existence of local neighbors is examined and the probability of a central
atom for reaction and desorption is then computed and compared to a second random number
to decide if the event will be executed or not.

Remarks on Null-Event Algorithms

Null-event algorithms have a major disadvantage: they possess events in which nothing
occurs. In these algorithms, there is noa priori influence of the surface configuration on
the selection of a microprocess. Instead, the effect of the surface configuration on the
probabilities is implicitly accounted for through the fraction of null events that in turn
affects the real time simulated by the algorithm. Since adsorption requires at least one
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vacant site to be successful, the fraction of null events increases with decreasing coverage
of empty sites, resulting in poor efficiency at low coverage of vacancies. We have found that
this inefficiency of algorithms with null events can be a serious impediment when longer
real times need to be reached, as happens, for example, when coupling with macroscopic
transport equations is attempted in the adjacent fluid phase [41], i.e., within a multiscale
computational framework. We discuss this issue more quantitatively below.

An obvious advantage of null-event algorithms is their ease of implementation related
to the lack of bookkeeping of neighbor lists. As a result, for conditions where all events
are nearly successful, these algorithms could be potentially quite efficient, given the fact
that they entail fewer operations per MC event than CTMC algorithms (see also discussion
below).

Real Time in Null-Event Algorithms

The original ZGB algorithm lacks real time, which is important for comparison to exper-
imental data and other algorithms. (Here the efficiency of algorithms is mainly compared
in terms of real time advanced rather than merely in terms of CPU seconds). Furthermore,
computation of reaction rates needed in boundary conditions of larger scale models is im-
possible because of a lack of real time in null-event algorithms. A connection of MC events
with real time was discussed in [44]. Here we propose calculating the average time step
based on a single microprocess. By choosing the adsorption of CO, we obtain

1t = 1

0̂a,CO
, (2)

where0̂a,CO is the transition probability of CO adsorption per unit time,

0̂a,CO = yCOÄ∗, (3)

andÄ∗ is the number of vacant sites. The time is updated only when a successful CO
adsorption is completed, as suggested a few years ago for another surface reaction system
[19, 20]. Time is introduced in Eq. (3) through the adsorption rate constant, which here
is taken as one, but it can also be computed with real kinetic parameters (see Eq. (4)). A
similar approach is followed for the unimolecular surface reaction.

We should note that the time step can also be computed using another microprocess such
as the O2 adsorption process, but this would require scanning the entire surface to compute
the transition probability for this microprocess every successful O2 adsorption event (see
transition probabilities in the next section). This would then render the null-event algorithm
very inefficient to run. In practice, the microprocess with the shortest time scale, and thus
the one most frequently selected, should provide more accurate results regarding the time
scales. Processes whose rate is a linear function of coverage, such as the CO adsorption
above, should obviously be preferred, as scanning of the surface is not required. We discuss
an alternative method, based on an average time step per event, in a subsequent section.

CONTINUOUS-TIME MONTE CARLO ALGORITHMS FOR SURFACE REACTIONS

First, we input the reaction mechanism along with the associated kinetic parameters (i.e.,
preexponentials and activation energies) in order to compute all transition probabilities of
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the reaction mechanism studied. Given the surface temperature, the reaction rate constants
are calculated for the adsorption (using the kinetic theory of ideal gases) and the desorption-
reaction (using an Arrhenius expression) microprocesses, respectively, as

ka = s0NA

CT

√
2πM RT

(4)

kd,r = Ad,r exp

(−Ed,r

RT

)
, (5)

wheres0 is the sticking coefficient for a clean surface,M is the molecular weight of the
gaseous adsorbing species,R is the ideal gas constant,NA is Avogadro’s number,CT is the
site density on the surface (sites per unit area),T is the temperature,A is the preexponential,
andE is the activation energy.

The algorithms discussed below are a modification of the one originally proposed by
Bortz et al. for spin prediction of an Ising model, known as the CTMC algorithm or KMC
method [36]. We present the general case of surface reaction mechanisms followed by
specific examples. Figure 1 provides a schematic of our overall algorithm, which consists
of microscopic processes, classes, and sites within a class (tree-type architecture). Table I
indicates the possible microprocesses describing the surface kinetics and their respective
transition probabilities. To calculate the probabilitiesP, given in Table I, the concept of
classes is introduced. Each surface species (including vacancies) is set in a class according
to its microenvironment and thus a class contains these sites, which have exactly the same
microenvironment and thus equal transition probability. Furthermore, classes for pairs such

FIG. 1. Schematic of the general proposed CTMC algorithm with lists of neighbors and local update.
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TABLE I

Six Common Langmuir–Hinshelwood Microprocesses for Catalytic Surface

Reactions and Their Corresponding Transition Probabilities

Microprocesses Transition probability

Unimolecular adsorption:A(g)+∗ → A∗ 0̂ = k[ A] · P∗
Dissociative adsorption:A2(g)+ 2∗ → 2A∗ 0̂ = k[ A2] P∗ · P∗/∗
Bimolecular surface reaction:A∗ + B∗ → Products 0̂ = k(PA∗ · PB∗/A∗ + PB∗ · PA∗/B∗ )

Unimolecular decomposition:A∗ +∗ → B∗ + C∗ 0̂ = k(PA∗ · P∗/A∗ + P∗ · PA∗/∗)

Unimolecular desorption:A∗ → A(g)+∗ 0̂ = k PA∗

Associative desorption: 2A∗ → A2(g)+ 2∗ 0̂ = k PA∗ · PA∗/A∗

Note.Here P∗ is the probability of picking a vacant site, [A] is the gas-phase partial pressure of
speciesA, Px/y is the probability of picking ay site given that anx site was first selected, andk is the
reaction rate constant in s−1. The transition probability is on a per site basis per unit time.

as (∗,∗) for O2 adsorption and (CO∗,O∗) for reaction are also considered. Using the transition
probabilities for the different classes, the pair probabilityP{x,y} is computed as the product
of the probabilityPx of choosing sitex and the conditional probabilityPy/x of choosing
sitey once sitex has been picked. The probability of a class involving a single species (e.g.,
Px), is just the fraction of sites occupied by this species (often referred to as coverage), i.e.,

Px = Äx

ÄT
, (6)

whereÄx is the number of sites occupied byx andÄT is the total number of catalyst
(lattice) sites. For transition probabilities involving two adjacent sites of identityx andy,
the number of sites of identityx having i adjacent sites of identityy is denoted asÄxyi

(hereafter termed as size of classxyi). The conditional probabilityPy/x is given by

Py/x =
∑4

i=1 i (Äxyi)

4Äx
. (7)

Note that the summation extends over all possible classes found (four on a square lattice
assuming either on top or only hollow binding).

The total transition probability per unit time is then given by

0̂tot =
nr∑

i=1

0̂i , (8)

wherenr is the total number of microprocesses encountered and the transition probabilities
0̂ are defined in Table I. Subsequently, thej th microprocess is selected using a random
numberRn if

j−1∑
k=1

0̂k < Rn0̂tot <

j∑
k=1

0̂k. (9)

The choice of a microprocess based on its transition probability ends the first level of the
decision tree.
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In the second level of the decision tree, a class belonging to the chosen microprocess is se-
lected. For microprocesses requiring one site (e.g., unimolecular adsorption or desorption),
there is a single class, except when the microprocess depends on the local microenviron-
ment. Examples of the latter case include an adsorption sticking coefficient which depends
on the local coverage and lateral interactions in the desorption step (A∗–A∗ interactions
only). The transition probability of this step is then corrected by multiplying the transition
probability with the lateral interactions’ term (demonstrated here for first-nearest neighbors
only)

Ixx =
∑4

i=0Äxxie−iw/RT

Äx
, (10)

wherew is the interaction strength (positive for attractive interactions and negative for
repulsive interactions). If the microprocess requires two sites, first a class of eligible pairs
is selected. The classes are weighted in the same way as they are in the calculation of the
reaction rates. This gives a probability of selecting class withm xypairs as

Cxym= mÄxym∑4
i=1[i (Äxyi +Äyxi)]

, (11)

and similarly for theyx class of the microprocess. The selection of a class ends the second
level of the decision tree.

Following the selection of a class, a site or pair within that class is selected at random and
the event is executed (third level of the decision tree). There are two variations of site selec-
tion, which exhibit quite different computational efficiencies, and for this reason, we dis-
cuss them next. As a first method, the site or pair selection is randomly done over the
entire surface; i.e., sites or pairs are randomly selected until the chosen microprocess can
be carried out [32–35]. This method resembles the ZGB algorithm with the exception of
the elimination of null events. We call this algorithm theCTMC method without lists.The
second method is to randomly select a site or pair from a list whose number equals the size
Ä of the class. The coordinates of sites or pairs of each class are stored in multidimensional
matrices, and so upon selection of one site or pair, the identification of the site or pair
requires no further computational work [39, 42]. In the case that a class involving a pair
is chosen, first a site is randomly selected and then the adjacent sites are checked for the
second species by starting at a random neighbor of the first site and proceeding clockwise.
When the second species is located, both sites are updated. We call this algorithm theCTMC
with lists.

Once a site/pair has been selected, the microscopic process is executed, and the corre-
sponding classes are updated. This update can be performed by rescanning the entire surface
after every event (global update), which is a computationally expensive method. To save
on computation time, alocal updatecan be implemented, in which only sites affected by
the event are updated within the radius of interactions, and the corresponding changes in
the transition probabilities are computed to update0̂. As a result, the computation time is
practically independent of the lattice size. In this local update, the size ofÄ of the altered
classes and the stored coordinates of affected sites and/or pairs are also changed. In partic-
ular, by modifying Nicholson’s idea [45], screening of vectors and of the entire lattice can
be avoided. To achieve this, the location and coordinates of a new atom are being added to
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the bottom of the list, whereas the location and coordinates of an atom being removed from
the list are swapped with those of the last atom of the list.

As a final step in the cycle, the average time elapsed during an event is computed by

1t = 1

ÄT 0̂tot
. (12)

The computation proceeds until some criterion is met. Since probabilities are computeda
priori of a MC event, each trial is in fact successful. We should note that surface diffusion
can also be included in the above algorithm in a similar way by considering it as an additional
microprocess.

For the specific example of CO oxidation, the rates for the three microprocesses are
CO adsorption:

0̂a,CO = kCO
a Pt yCOP∗ (13)

O2 adsorption:

0̂a,O2 = kO2
a Pt yO2 P∗P∗/∗ (14)

Reaction:

0̂r = kr
(
PCO∗PO∗/CO∗ + PO∗PCO∗/O∗

)
. (15)

Here Pt is the total gas pressure. Since the surface reaction rate constant is taken to be
infinite in the ZGB model,kr is taken here as a large number. To be consistent with the ZGB
algorithm,ka for both reactants is set equal to one. Note that computation of real time in
the null-event algorithm, based on Eq. (14) or Eq. (15), demands knowledge of conditional
probabilities that require scanning of the entire lattice, a computationally inefficient process
in a null-event algorithm where these probabilities are not computed.

For the class update, the CTMC method without lists can use either a local or a global
update. However, to explore the computational differences between algorithms, the local
update is used for the CTMC method without lists (otherwise the method becomes too CPU
intensive). The computation time of the CTMC method with lists using global update is also
compared to show the advantage of using the local update; thus, a total of four algorithms
are considered below.

SELF-CONSISTENCY OF ALGORITHMS

First, the proposed local update CTMC algorithm has been compared to literature results
to ensure numerical accuracy. Two monomer–monomer systems were considered [15, 16].
In both cases, neither adsorbate–adsorbate interactions nor surface diffusion was considered.
In addition, the NO–CO reaction mechanism on a square lattice was compared to the results
of [12]. As a final comparision, a dimer–dimer reaction mechanism was considered [18].
In all cases, the agreement with reported results in the literature was very good.

As an example, Fig. 2 shows a reaction isotherm for the CO oxidation by molecular
oxygen. The gas-phase concentrations remain constant throughout a simulation and are
uniform across the surface. The surface is taken as a uniform, Pt(100) plane, with no
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FIG. 2. Reaction isotherm of CO oxidation on a catalytic surface obtained with different algorithms for a
lattice size of 160× 160. Poisoning with O occurs for gas-phase concentrationsyCO < ∼0.39 and with CO
happens foryCO > ∼0.52. The region between these two limits remains reactive at steady state. The rate constants
of adsorption of CO and O2 are both set to 1. Solid lines: ZGB algorithm; squares: CTMC method with local
update and lists; circles: CTMC method without lists. The CTMC with global update is not shown for clarity.

defects. As Ziff and co-workers (and many others) have shown, a reactive region exists for
this reaction [1, 6]. The transition from an oxygen-poisoned surface to the reactive region
is continuous (a second-order phase transition), whereas the transition from the reactive
region to a CO-poisoned surface is discontinuous (a first-order phase transition). Figure 2
indicates that all algorithms predict the same reactive region.

Aside from steady state solutions, time-dependent situations can be a more severe test of
different algorithms. As an example, Fig. 3 shows a transient response starting from an empty
surface toward the steady state, within the reactive region. There is good agreement between
the ZGB and the proposed CTMC algorithms (only the local update with lists is shown for
clarity). This reaffirms the accuracy of the time integration using the null-event algorithm.

COMPUTATIONAL EFFICIENCY BY DIRECT NUMERICAL

SIMULATIONS FOR A CASE STUDY

To investigate the computational efficiency of the four algorithms, the specific example
of CO oxidation is used. All the simulations were performed on a 533-MHz DEC Alpha

FIG. 3. Transient response of an initially clean surface exposed to a gas-phase concentration ofyCO = 0.45,
which is in the reactive region. The simulation is performed on a 160× 160 lattice. There is good agreement
between the ZGB algorithm and the CTMC method with lists and local update, even for a single run.
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FIG. 4. Comparison of computation times of various algorithms for (a) finite, fast kinetics ofkr = 100 and
(b) infinitely fast kinetics. For the latter case, the ZGB is the fastest algorithm but it becomes very slow when
stiff problems are encountered. The efficiency of the CTMC algorithm with lists and global update depends
logarithmically on the lattice size, whereas efficiency of the CTMC algorithm without lists depends on kinetics.
The other parameters are those of the ZGB model.

workstation. Figures 4a and 4b plot the CPU time required by the four algorithms to reach the
same real time versus lattice size in the case of finite fast kinetics (kr = 100,ka Pt = 1) and
infinitely fast kinetics (note that a very large rate constantO(1032) was taken in the CTMC
algorithm). For these comparison, I/O and initialization are not included. Furthermore,
owing to differences in programming between different codes, these numbers should be
viewed as reasonable indicators rather than absolute values.

First we discuss scaling laws. Figure 4 shows that in all cases the null-event algorithm
and the CTMC with local update algorithm have a weak dependence on the lattice size as no
scanning of the lattice is required during a MC simulation (except for an initial scanning). In
null-event algorithms, the CPU time required to advance the real time by a certain amount
is largely dependent on the percentage of null events performed, which is independent of
lattice size. However, the fraction of null events strongly depends upon the value of rate
constants, as shown in Fig. 4 and discussed later in this paper. On the other hand, the CTMC
with global update algorithm exhibits a logarithmic dependence (when plotted on a log–log
scale, a straight line is obtained) on the lattice size due to the scanning of the surface at each
event required to update the classes and the associated coordinates for the computation of the
transition probabilities. Finally, the CTMC without lists algorithm, which randomly selects
sites until the MC event is successful, exhibits an interesting scaling behavior. Specifically,
in the case of finite kinetics, the CPU time increases with increasing lattice size and reaches
a plateau, whereas in the case of infinitely fast kinetics, it exhibits a logarithmic dependence
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on lattice size. As was reported by Jansenet al., for these type of algorithms the lattice size
dependence changes fromO(ln(Ä1/2

T )) to O(ÄT ) when the surface reaction is fast, due to
a low probability of finding suitable sites for reaction [34].

Figure 4 indicates that the CPU times of the CTMC algorithm with local and global
update remain unaffected by the reaction rate constant as this does not directly affect the
execution time of a MC event. In contrast, the performance of the null-event algorithm
increases dramatically from finite to infinitely fast kinetics primarily because of the large
normalization constant. Despite the absence of null events in the CTMC algorithms, the
null-event algorithm is the fastest in the infinitely fast reaction case. However, the null-
event algorithm is much slower than the local update with lists CTMC algorithm for finite,
fast kinetics as shown in Fig. 4. While null events are eliminated in CTMC algorithms,
the execution time, related to the number of operations involved per MC event, is gener-
ally higher than that for the null-event algorithm. A detailed analysis of computer speed
and memory of three different MC algorithms was given in [46], and so here we only
briefly touch on this subject. Without taking into account the initialization of classes and
transition probabilities in the CTMC algorithm and neglecting the number of additions
and subtractions, the CTMC with lists and with local update code involves about five
times more operations and access to many vectors and matrices. Therefore, it is clear that
the CTMC with local update code is more demanding to run for the same number of
MC events but has the benefit of eliminating null events. Finally, we should remark that
while CTMC algorithms provide real time in a transparent way, their efficiency becomes
a computational impediment, especially for large lattices, unless lists of neighbors and
local update are employed. It also becomes clear why scanning of the lattice for comput-
ing the real time in null-event algorithms with nonlinear rates resulting from bimolecular
steps, i.e., O2 adsorption, or lateral interactions, mentioned above, slows computations
considerably.

ANALYTIC FORMULAS FOR REAL TIME ADVANCED BY MONTE

CARLO ALGORITHMS

The null-event algorithm is very straightforward to implement compared to the CTMC
with local update and it is faster per MC event. Therefore, it would be interesting to derive
simple criteria allowing one to choosea priori between the null-event algorithm and the
CTMC with local update. In order to analytically compare their numerical efficiencies,
the ratio of the real time advanced by each code for a given number of MC events can be
derived at steady state as

tnull

tCTMC
= τ ads

succP
ads
succ

τCTMC
, (16)

whereτ ads
null andτCTMC correspond to the average real time advanced per MC event in the

null-event algorithm and the CTMC algorithm, respectively, andPads
succ is the probability

of having a successful adsorption event.τCTMC is given by Eq. (12) andτ ads
null = 1/0̂a,A.

The task is then to compute the temporal averaged probabilities, assuming that the time
scales are normally distributed with a small standard deviation. This assumption has been
verified via direct numerical simulations. Note that here the time advanced in null-event
algorithms follows [19, 20] and differs from the conventional way of incrementing the
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time step by the inverse of the lattice size after each event. The latter method is shown
below to give equivalent results only for the ZGB algorithm. Next we discuss selected
examples.

A Unimolecular Surface Reaction

We start with the unimolecular reaction as the first example. The probability of having
a successful event, which corresponds to the sum of the probabilities of each micro-
process, is

Psucc= ka Pt yA

kmax
P∗ + kr

kmax
(1− P∗)+ kd

kmax

∑4
i=0ÄAAie−iw/RT

ÄT
, (17)

wherekmax is the normalization constant of all probabilities. From the steady state mass
balance we can deduce thatPads

succ= Pdes
succ+ Prxn

succ= Psucc/2. Combining all this information,
we obtain expressions for the average real time of each algorithm,

Pads
succτ

ads
succ=

ka Pt yAP∗ + kr (1− P∗)+ kd

∑4

i=0
ÄAAie−iw/RT

ÄT

2kmaxka Pt yAÄ∗
= 1

kmaxÄT
(18)

τCTMC = 1

ka Pt yAÄ∗ + kr (ÄT −Ä∗)+ kd
∑4

i=0ÄAAie−iw/RT
, (19)

leading to the following general expression for the ratio of the real times:

tnull

tCTMC
=

(
ka Pt yAP∗ + kr (1− P∗)+ kd

∑4

i=1
ÄAAie−iw/RT

ÄT

)2

2kmaxka Pt yAP∗
= 2ka Pt yAP∗

kmax
. (20)

Note that in Eqs. (18)–(20),P∗ andÄAAi are temporal averages. Very good agreement (up
to a few percent deviation) is observed between the ratio obtained from direct numerical
simulations and Eq. (20) for all simulations conducted.

To assess the computational efficiency issue, limiting cases were next studied. Indeed,
if one of the rate constants is much larger than the other two (in the limit ofw = 0),
Eq. (20) can be simplified. For example, ifka Pt yA À kd,r then the surface will be almost
completely covered byA∗ at steady state. Using the mass balance, one can express the
vacant site coverage to obtain the following simple expression (assumingkmax= ka Pt yA):

tnull

tCTMC
= 2P∗ = 2(kr + kd)

ka Pt yA
. (21)

Similarly whenkd,r À ka Pt yA one can write (assumingkmax= kd,r )

tnull

tCTMC
= 2ka Pt yA

kd,r
. (22)

Equations (21) and (22) compare well to Eq. (20) and, thus, to the numerical simulations.
We can therefore reach a simple conclusion that the null-event algorithm becomes very
inefficient, by several orders of magnitude, when there is disparity in rate constants. This
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general conclusion drawn for a unimolecular reaction seems, however, to contradict the
results for CO oxidation shown in Fig. 4, where an infinitely fast reaction was modeled.
This issue will be clarified below.

Another case is when attractive interactions play a role in the efficiency of the two algo-
rithms. Indeed, in the case wherekd À ka Pt ya but kde−4w/RT ¿ ka Pt yA and the reaction
is slow, the surface becomes almost completely covered and we have the following simpli-
fication of Eq. (20):

tnull

tCTMC
= 2e−4w/RT. (23)

Equation (23) implies that the stronger the attractive interaction, the less efficient the null-
event algorithm becomes.

Front Tracking for Moving Boundaries

We should note that the CTMC algorithm with lists and local update represents a front
tracking technique; i.e., successful events occur only in the neighborhood of the moving
interface. As an example, a moving boundary problem was analyzed by starting with a
half-covered and a half-empty surface when a phase transition occurs, leading to a fully
covered surface in the case of a unimolecular reaction. To reach steady state, the null-event
algorithm needs two orders of magnitude more MC events than the CTMC with list and
local update. This result is close to the steady state efficiency predicted by Eq. (20) for the
specific parameters chosen.

Infinitely Fast CO Oxidation Kinetics

Following the approach outlined above, a similar analytic formula can be derived for the
catalytic oxidation of CO described by Eqs. (13)–(15), using the mass balance at steady

statePadsCO
succ = 2P

adsO2
succ = Prxn

succ:

PadsCO
succ τ

adsCO
succ =

2

3

yCOP∗ + yO2 P∗P∗/∗
yCOÄ∗

= 1

ÄT
(24)

τCTMC = 2

5

1

yCOÄ∗
. (25)

We then obtain the simple relation

tnull

tCTMC
= 5yCOP∗

2
. (26)

For this specific case, the real time advanced by the original ZGB algorithm (see Eq. (24))
depends only on the lattice size. By comparison to Eq. (18), it is clear though that this result
is problem specific (true only whenkmax= 1). It is our experience thatkmax is not always
easy to predict for complex kinetics with either long-range interactions or multicomponent
interactions manifested in density functional theory simulations. For this reason, we propose
that akmax adaptive scheme could be used for optimal code performance while taking into
account rare events with very largekmax. Furthermore, at a given CO mole fraction, the
efficiency of the two codes depends merely on the coverage of empty sites, which in this
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FIG. 5. Ratio of real times advanced by the null event algorithm and the local update with lists CTMC
algorithm vs mole fraction of CO in the reactive regime for (a) finite, fast kinetics (kr = 100) and (b) infinitely
fast kinetics. The other parameters are those of the ZGB model.

example is bounded to relatively large numbers. Figure 5 shows the ratio of times within the
reactive region computed using Eq. (26) and the coverage of vacancies obtained from direct
numerical simulations. In this zone, the real time advanced by the null-event algorithm can
be up to about one order of magnitude smaller than that of the local update with lists CTMC
algorithm. This outperformance of the CTMC algorithm is compensated by its lower speed
per MC event, as the results in Fig. 4 indicate. As noted above, it is interesting to note
that despite the stiffness of this example (infinitely fast kinetics), the null-event algorithm
performs very well. This is rationalized next.

Finite CO Oxidation Kinetics

The above derivation can be easily extended to take into account finite reaction kinetics
in the CO oxidation. The ratio of times between the null-event algorithm and the CTMC
with local update algorithm then becomes

tnull

tCTMC
= 5yCOP∗

2(kr + 2)
. (27)

Equation (27) indicates that for finite, fast kinetics, the null-event algorithm becomes com-
putationally very demanding compared to the infinitely fast kinetics askr becomes large.
This is in fact shown for a set of parameters in Fig. 5 and is consistent with the observations
made in Fig. 4. The apparent paradox in computational efficiency of the null-event algo-
rithm shown in Fig. 4 appears then to be caused by the specific (optimal) implementation
of the original ZGB algorithm, where an adsorption step is often immediately followed by
a surface reaction step. This implementation (a hybrid null-event algorithm) removes the
stiffness of the equations. A similar situation arises when an infinite Fickian diffusion is
modeled by randomly redistributing all atoms on the lattice in each MC event.

The cases studied above show that the null-event algorithm becomes very inefficient
when the problem is stiff, i.e., when widely varying time scales are involved. Analytic
formulas, such as Eqs. (20), (25), and (27), allow a quick study of the efficiency of the
null-event algorithm over the CTMC approach. Indeed, even though the null-event algorithm
is very straightforward to implement, it is not the best choice for stiff problems (rare event
dynamics).
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COMPUTATIONAL ACCURACY

Another topic of interest is the accuracy of MC algorithms in predicting (i) converged
steady state solutions and (ii) low concentrations of surface species such as radicals. For the
latter case, although radical species, such as OH∗, exist at very low surface concentrations,
they are crucial intermediates in the overall mechanism (see H2 oxidation chemistry for
an example [47]). Given the small size of a lattice, it is not readily apparent whether such
low concentrations and corresponding reaction rates can be accurately captured by time
averages of MC simulations.

To exploit these issues, a simple system of three reacting surface species is considered.
The mechanism and corresponding rate constants are as follows:

A+∗ k1↔
k−1

A∗

B+∗ k2↔
k−2

B∗

C+∗ k3↔
k−3

C∗

A∗
k4→ B∗

B∗
k5→ C∗.

Since the rate expressions for this system are all linear (they all involve a single lattice site),
the results obtain from MC simulations can be compared to the exact values obtained using
a MF model (a model system whose behavior is analytically predictable). This enables us
to test the accuracy in computing surface coverages and reaction rates by MC simulations
and to discuss implications for nonlinear kinetics of practical interest.

As a first example, the transient response of an initially clean surface was explored. The
kinetic parameters are chosen so that consumption ofB and desorption ofC are relatively
fast, resulting in low coverages. Figure 6 shows that MC results from a single run are
inaccurate at low surface concentrations, in this case, at short times. Interestingly enough,

FIG. 6. Transient response of a clean surface toward steady state for a linear reaction mechanism and a lattice
size of 120× 120. The small lattice limits the accuracy of a single MC simulation for surface coverages below the
lattice resolution. Circles correspond to MC data, squares correspond to temporal averaged (over 100 independent
runs) MC data for the surface coverage of B∗, and solid lines correspond to the MF model. The parameters for this
simulation arek1 = 2, k−1 = 0.01, k2 = 1, k−2 = 0.02, k3 = 3, k−3 = 10, k4 = 1, k5 = 10, yA = 0.8, yB = 0.1,
andyC = 0.1.
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deviations at short times of a single run do not propagate to longer times, as usually happens
with integration of deterministic ordinary differential equations. Using a single simulation,
concentrations above the lattice resolution approach the MF values. However, the deviations
below the resolution limits of the small lattice require substantially more runs (O(102) for
the average to approach the MF value as shown with the squares in Fig. 6.

The effect of limited lattice size has been further exploited for a second set of conditions,
where all rate constants are fixed exceptk5, which ranges from 10−2 to 106. By increasingk5,
the surface concentration ofB∗ decreases, and at high values of the reaction rate constant,
speciesB∗ is in quasi-steady state and its concentration becomes very low (the number
of B∗ molecules basically varies between 0 and 1 in various surface snapshots). Under
such conditions, the rate of reaction also varies between zero and a finite value, showing
large fluctuations. We have previously shown that stochastic effects can cause significant
deviations in results of small size systems from continuum conservation equations [42]. We
further explore this issue for lattice MC next, when the species concentrations fall below
the resolution threshold.

One method of calculating rates from MC simulations is to evaluate an arithmetic mean
of instantaneous transition probabilities, given by

〈0̂i 〉 =
∑n

k=1 0̂i (k)

n
, (28)

wheren is the number of snapshots used. However, under conditions where large fluctuations
in rates occur between consecutive events, the transition probabilities and, thus1t , vary
significantly. It is therefore expected that Eq. (28) will not provide accurate estimates of
rates. Another method of calculating rates is to use a time-weighted average of the transition
probabilities, given by

〈0̂i 〉 =
∑n

k=1

∫
τk
0̂i dt

τk

n
=
∑n

k=1
Mi (k)
τk

n
, (29)

whereMi (k) is the number of events of microprocess of typei occurring over timeτk (easily
counted in a simulation) andn is now the number of intervals over which an average rate
is computed. If the time step1t is constant, then Eq. (29) reduces to Eq. (28). Figure 7a
indicates that ask5 increases, Eq. (28) becomes inaccurate, whereas Eq. (29) remains
accurate. This fact can be exploited to calculate the surface coverage of intermediate species
at low coverages. Using the rate calculated from Eq. (29), the surface coverage ofB∗ can
be determined from

〈θB〉 = 〈0̂5〉
k5

(30a)

compared to a simple arithmetic mean

〈θB〉 =
∑n

k=1 θB(k)

n
. (30b)

Figure 7b shows a comparison of the different methods for calculating the low concentration
of the intermediate species. Using the method proposed above (Eq. (30a)), the concentration
of B∗ can be determined to a good degree of certainty, even from a single run.
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FIG. 7. Comparison of average transition probabilities (a) and coverage of intermediate species (b) versus
the reaction rate constantk5. The parameters for this simulation arek1 = 2, k−1 = 0.01,k2 = 0.01,k−2 = 0.002,
k3 = 100,k−3 = 1,k4 = 0.01,yA = 1, yB = 0.0, andyC = 0.0. The time-weighted average transition probabilities
provide a more accurate method of calculation compared to the arithmetic mean when large fluctuations in transition
probabilities occur between events. Despite a resolution threshold caused by finite lattice sizes, the concentrations
of key intermediates can accurately be computed (see text).

As another example, the CO oxidation problem was considered. For the adsorption
rates of CO and O2, the agreement between Eq. (28) and Eq. (29) is good (0.001% for
CO adsorption and 0.8% for oxygen adsorption). However, for the surface reaction rate,
Eq. (28) resulted in large errors due to the huge reaction rate constant of the surface reaction.

For the example of CO oxidation, the convergence of steady state equations was also ex-
amined. At steady state, the rates involving a surface species multiplied by its stoichiometric
coefficients (the residual) should be equal to zero. For CO∗, the normalized residual is

|〈0̂CO〉 − 〈0̂R〉|
〈0̂CO〉

× 100%. (31)

The normalized residual for oxygen is∣∣2〈0̂O2

〉− 〈0̂R〉
∣∣〈

0̂O2

〉 × 100%. (32)

Using the rates obtained from Eq. (29), the steady state residuals are less than 1%. Such
numbers are typically larger than the corresponding counterparts of continuum type
diffusion–reaction solvers based on Newton’s technique. While better convergence is pos-
sible, prohibitively large lattices or parallelization may be required to achieve this.
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CONCLUSIONS

We have presented a general, efficient CTMC algorithm, applicable to complex surface
reaction mechanisms, and discussed two additional, frequently used ones. Using the example
of the CO oxidation, the computational efficiency of various algorithms was compared for
the same integration time rather than the same number of MC events. Simple formulas were
also derived to compare real times between the null-event algorithm and the CTMC with
local update algorithm for a unimolecular reaction and the CO oxidation reaction. Finally,
accuracy issues related to lattice size resolution were addressed. The main conclusions are
summarized as follows:

• Using a single microprocess, such as CO adsorption, real time can be introduced into
the ZGB algorithm and null-event algorithms in general.
• Null-event algorithms can become extremely inefficient compared to the CTMC algo-

rithm with lists and local update when stiff problems are encountered.
• These two algorithms show a slight dependence on the lattice size compared to the

CTMC with global update or the CTMC without lists algorithm. This is an interesting
feature if larger lattice size simulations are required to obtain accurate solutions.
• Using time-weighted averages, the reaction rates and low surface coverages (below

the resolution of the lattice size) can be computed accurately; on the other hand, simple
arithmetic mean estimations can lead to wrong results in coverage using a single run. This
behavior indicates that application of CTMC algorithms to realistic reaction schemes, where
concentrations of intermediates are low, is feasible.

The computational efficiency of the proposed algorithm makes it an attractive alternative
to other available algorithms. Aside from its speed, it can also be readily adapted to arbitrarily
complex reaction mechanisms. This versatility can make it a more desirable choice than
null-event algorithms.
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