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A continuous-time Monte Carlo (CTMC) algorithm with lists of neighbors and
local update (tree-type architecture) for simulating the dynamics and stationary pat-
tern formation of complex surface reaction mechanisms is discussed. Two additional
CTMC algorithms, often used in the literature, are also presented. The computational
efficiency of these CTMC algorithms is compared to a null-event algorithm for the
CO oxidation on a Pt(100) surface by direct numerical simulations. Furthermore,
we have derived simple formulas for the real time advanced using the null-event
algorithm and the CTMC with local update algorithm for the infinitely fast and finite
CO oxidation kinetics as well as a unimolecular surface reaction. We have found
that the proposed CTMC algorithm with classes and local update can be much faster
than the traditional null-event algorithms by orders of magnitude, when stiffness
occurs (rare event dynamics). In addition, we address the computational accuracy of
Monte Carlo algorithms, due to limited resolution caused by finite lattice sizes, for
key intermediate species in a complex reaction mechanism. It is shown that surface
concentrations below the resolution of the lattice and corresponding reaction rates
can accurately be calculated through the use of a time-weighted average of reaction
rates. @ 2001 Academic Press

INTRODUCTION

Surface reactions are an important component in the design and optimization
homogeneous—heterogeneous systems such as catalytic and chemical vapor depositi
actors. Traditionally, surface reactions have been modeled assuming a uniform distribu
of each species on the surface. This idealized situation is often envisioned for infir
Fickian-type diffusion coefficients of all surface species. This mean field (MF) approxim
tion does not take into account the stochastic nature of nucleation phenomena and sy
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inhomogeneities associated with heterogeneous systems such as crystal defects and

adsorbate—adsorbate interactions. In addition, any nonlinear rate term in a MF conserve
equation, such as the dissociative adsorption of a diatomic molecule on a surface ol
reaction rate of a bimolecular surface reaction, has an explicit dependence on the loca
croenvironment of atoms resulting in spatial micropatterns. These spatial inhomogene
render the MF approximation a poor representation of experimental findings. In ordel
overcome this problem, Monte Carlo (MC) techniques are used on a lattice represen
the chemisorption sites of various species. MC simulations solve a master equation

O S WPy~ WPl )

B

whereP, is the probability of the surface being in configuratioandW, is the transition
probability per unit time of the surface going from configuratmo «. Given the large
number of possible configurations, Eq. (1) cannot be solved analytically for any real syst
As a result, methods such as MC are often implemented. This representation belong
the general class of interacting Ising particle systems (IPS) of nonequilibrium statisti
mechanics.

MC simulations are typically computationally intensive and thus, the implementati
algorithm can have important consequences for computational efficiency. The first grou
MC algorithms for surface reactions, introduced by Ziff and co-workers, used sites or p:
selected atrandom and assumed that an event may occur or not (a null-event algorithm).
algorithm is known as the ZGB method [1]. Following up on their pioneering work, mar
studies have employed variations of the original algorithm to include additional mechani:
steps [2—-6]. Regarding specific reaction systems,rhikevent algorithrmhas been used
to model monomer—dimer reaction systems such as the CO oxidation,byddomer—
monomer surface reactions, dimer—dimer surface reactions, and more complicated rea
mechanisms such as the CO methanation and the catalytic reduction of NO by CO [7-
A similar null-event, real-time algorithm was also used for a unimolecular surface react
[19, 20]. For an overview of many physical applications that have been modeled using
see the review papers by Evans [21], Zhdanov and Kasemo [22, 23], Kang and Weinl
[24], Jansen and Lukkien [25], Lombardo and Bell [26], and Nieminen and Jansen [2
The latter reference has an overall review of ZGB algorithm modifications.

It turns out that the application of the null-event algorithms to more complicated reacti
schemes is nontrivial, and time is often presented in MC trials or steps. An exceptior
this can be found for a unimolecular reaction [19, 20, 28]. However, the methods preset
there, based on unimolecular events only, cannot be directly applied to more complex kin
systems (e.g., th&, + B, reaction). Furthermore, real time is sometimes miscomputed [2
29]. Modifications to the ZGB algorithm to reduce or eliminate null events have been p
posed and implemented to model CO oxidation [30-35]. These algorithms are a deriva
of the one proposed by Bort al, often referred to as the continuous-time MC methoc
(CTMC) or kinetic MC (KMC) method [36]. For spatially homogeneous reactions, relate
real-time MC algorithms were introduced long ago by Gillespie [37, 38]. A variation ¢
such an algorithm, discussed below, has proven to be computationally very efficient at
temperatures in growth, etching, and equilibration of materials [39] over the most co
monly used Metropolis algorithm [40]. This last algorithm has also been used to mode
unimolecular surface reaction coupled to a transport model in the adjacent gas-phase
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catalyst [41] and (with a lumping technique to handle numerical stiffness caused by pat
equilibrium situations) systems with detailed chemistry, such as hydrogen ignition [42].

In this paper, a general algorithmic framework is presented that is capable of handl
arbitrarily complex, detailed surface reaction mechanisms based on the CTMC mett
similar to the work of [30]. This feature is essential to replacing computational packag
based on MF approximations, such as Surface CHEMKIN, in large-scale reactor moc
[43]. Because of the lack of real time in the ZGB algorithm, detailed comparison of tl
computational efficiency of various algorithms is not straightforward. By introducing re
time in the ZGB algorithm and in general in null-event algorithms, a systematic comparis
of various CTMC and null-event algorithms is conducted here for two examples, the (
oxidation on Pt and a unimolecular surface reaction. Numerical efficiencies are contras
with analytic formulas, derived here for the first time, regarding the real time advanced
the null-event algorithm and the most efficient CTMC algorithm. Finally, issues related
accuracy and finite size effects for intermediates found at low concentrations are discus
and an example from reactions in series is presented.

NULL-EVENT ALGORITHMS

Null-event algorithms depend to some extent on the specific reaction system studied.
the presentation here, we start with the CO oxidation on platinum and follow this by t
unimolecular surface reactioh — B.

Infinitely Fast CO Oxidation Kinetics

CO oxidation is a problem that has received considerable attention. The reaction me
anism considered is

CO(g) +* — CO*
Ou(g) + 2* — 20*
CO* +O* — COx(g),

where* denotes a vacant site or adsorbed species and g denotes a gaseous species. G
CO adsorbs onto the surface occupying a single site. Oxygen adsorbs dissociatively ont
surface, requiring two adjacent sites. The surface reaction betweer ard@n adjacent
O* is fast, and the product CQ@lesorbs readily from the surface.

The catalyst surface is modeled using a square lattice representing the Pt(100) p
and periodic boundary conditions are employed (note that surface reconstruction is
considered in this work). The algorithm introduced by Ziff and co-workers [1] is as follow:
A MC event consists of a microprocess (adsorption of CO9Qr@ing randomly selected.
The probability of picking the carbon monoxide microprocess s given by the gas-phase i
fraction of carbon monoxidgco. Similarly, the probability of picking oxygen adsorption is
given by the mole fraction of oxygen in the gas-phase, which for a binary mixture (assum
Yco, = 0)is (1— yco). Therate constant of the surface reaction is considered to be infinite
large. Upon selection of a CO adsorption microprocess, a site is selected at random. |
site is occupied, then adsorption is unsuccessful, and the event ends (a null event). |
site is not occupied, the CO molecule adsorbs, and the adjacent sites are randomly che
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for the presence of an*OlIf an C* is found, the two species react, forming £@hich
immediately desorbs. Upon selection of an oxygen adsorption event, two adjacent site:
randomly selected. If either site is occupied, the adsorption is unsuccessful and the e
ends (a null event). Otherwise, the oxygen dissociatively adsorbs onto the surface, an
adjacent sites are checked for CTUf any adjacent site is occupied with CCQthe two
species react, forming GOwhich immediately desorbs.

Finite CO Oxidation Kinetics

The null-event ZGB algorithm can be extended to finite kinetics. First a lattice site
randomly picked. If the site is empty, adsorption is attempted as discussed above, wi
probability that depends on the adsorption rate constants. If the site is occupied, a rea
event is attempted. The execution of the surface reaction follows the same procedur
the dissociative adsorption of,Othat is, once a site has been chosen, adjacent sites «
randomly checked for the complementary surface species. When-aCEQair is selected,
the event is successful with a probability that depends on the reaction rate cogstant,

In our work, results from this algorithm have been compared to CTMC, and excelle
agreement was found. In the presence of finite, fast kinetics, i.e., adacgenpared to the
adsorption rate constants, the normalization constant of all probabilities is very high. A
result, many unsuccessful adsorption events occur, resulting in poor efficiency of the n
event algorithm. We will return to this point in a later section, where analytical formul:
for the real time advanced by various algorithms are discussed for various cases.

A Unimolecular Surface Reaction

Next we discuss an example of a unimolecular reaction of a single spet&ssforming
into B according to the overall scheme

A+ — A*
A — AL+*
A* — B +*.

Attractive adsorbate—adsorbate interactions are considered in the desorption step.
null-event algorithm has been outlined in [19, 20]. In brief, a random number is used
select a lattice site. When the selected site is empty, an adsorption event is attempted
probability proportional to the adsorption rate constant. When the occupied site (cen
atom) is filled, the existence of local neighbors is examined and the probability of a cen
atom for reaction and desorption is then computed and compared to a second random nu
to decide if the event will be executed or not.

Remarks on Null-Event Algorithms

Null-event algorithms have a major disadvantage: they possess events in which not
occurs. In these algorithms, there is agriori influence of the surface configuration on
the selection of a microprocess. Instead, the effect of the surface configuration on
probabilities is implicitly accounted for through the fraction of null events that in tur
affects the real time simulated by the algorithm. Since adsorption requires at least
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vacant site to be successful, the fraction of null events increases with decreasing cove
of empty sites, resulting in poor efficiency at low coverage of vacancies. We have found t
this inefficiency of algorithms with null events can be a serious impediment when long
real times need to be reached, as happens, for example, when coupling with macrosc
transport equations is attempted in the adjacent fluid phase [41], i.e., within a multisc
computational framework. We discuss this issue more quantitatively below.

An obvious advantage of null-event algorithms is their ease of implementation rela
to the lack of bookkeeping of neighbor lists. As a result, for conditions where all ever
are nearly successful, these algorithms could be potentially quite efficient, given the f
that they entail fewer operations per MC event than CTMC algorithms (see also discus:
below).

Real Time in Null-Event Algorithms

The original ZGB algorithm lacks real time, which is important for comparison to expe
imental data and other algorithms. (Here the efficiency of algorithms is mainly compat
in terms of real time advanced rather than merely in terms of CPU seconds). Furtherm
computation of reaction rates needed in boundary conditions of larger scale models is
possible because of a lack of real time in null-event algorithms. A connection of MC eve
with real time was discussed in [44]. Here we propose calculating the average time ¢
based on a single microprocess. By choosing the adsorption of CO, we obtain

1
At= - ?)
Ia,co

wheref“aqco is the transition probability of CO adsorption per unit time,
Fa.co = YcoSs. 3)

and @, is the number of vacant sites. The time is updated only when a successful
adsorption is completed, as suggested a few years ago for another surface reaction s\
[19, 20]. Time is introduced in Eg. (3) through the adsorption rate constant, which he
is taken as one, but it can also be computed with real kinetic parameters (see Eq. (4)
similar approach is followed for the unimolecular surface reaction.

We should note that the time step can also be computed using another microprocess
as the Q adsorption process, but this would require scanning the entire surface to comf
the transition probability for this microprocess every successfuhddorption event (see
transition probabilities in the next section). This would then render the null-event algoritt
very inefficient to run. In practice, the microprocess with the shortest time scale, and tl
the one most frequently selected, should provide more accurate results regarding the
scales. Processes whose rate is a linear function of coverage, such as the CO adsol
above, should obviously be preferred, as scanning of the surface is not required. We dis
an alternative method, based on an average time step per event, in a subsequent secti

CONTINUOUS-TIME MONTE CARLO ALGORITHMS FOR SURFACE REACTIONS

First, we input the reaction mechanism along with the associated kinetic parameters (
preexponentials and activation energies) in order to compute all transition probabilities
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the reaction mechanism studied. Given the surface temperature, the reaction rate con:s
are calculated for the adsorption (using the kinetic theory of ideal gases) and the desorp
reaction (using an Arrhenius expression) microprocesses, respectively, as

SNa
Ky = — 2 A 4
4 Civ2TMRT “)
—E
Kar = Ads eXp< Ri’r>, (5)

wheres is the sticking coefficient for a clean surfadd, is the molecular weight of the
gaseous adsorbing speciésis the ideal gas constant, is Avogadro’s numbeC+ is the
site density on the surface (sites per unit aréay,the temperaturel is the preexponential,
andE is the activation energy.

The algorithms discussed below are a modification of the one originally proposed
Bortz et al. for spin prediction of an Ising model, known as the CTMC algorithm or KMC
method [36]. We present the general case of surface reaction mechanisms followe
specific examples. Figure 1 provides a schematic of our overall algorithm, which cons
of microscopic processes, classes, and sites within a class (tree-type architecture). Te
indicates the possible microprocesses describing the surface kinetics and their respe
transition probabilities. To calculate the probabilities given in Table I, the concept of
classes is introduced. Each surface species (including vacancies) is set in a class accc
to its microenvironment and thus a class contains these sites, which have exactly the ¢
microenvironment and thus equal transition probability. Furthermore, classes for pairs s

Calculate microscopic
L . rates and transition
Initialize lattice and set probabilities of events
classes —1 by scanning the entire
surface
>
Yes
y
No
Continue? Select a microprocess
y
Update locally .
sites/pairs, classes, and — Select a class of sites
the transition or pairs
probabilities
L Done L Select a site/pair within
the class

FIG. 1. Schematic of the general proposed CTMC algorithm with lists of neighbors and local update.
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TABLE |
Six Common Langmuir-Hinshelwood Microprocesses for Catalytic Surface
Reactions and Their Corresponding Transition Probabilities

Microprocesses Transition probability

—K[A]- P,
=K[AJ]P, - P,

= K(Par - Paear + Pas - Pas )
=K(Pa - Poar + P, Pasa)

= KPu

= KPy - P/

Unimolecular adsorptionA(g) +* — A*
Dissociative adsorptiond,(g) + 2* — 2A*
Bimolecular surface reactiods* + B* — Products
Unimolecular decompositiorA* +* — B* 4+ C*
Unimolecular desorptiorA* — A(g) +*
Associative desorption:® — A,(g) + 2*

o P By P iy P ilany Plllany Plany Y

Note.Here P, is the probability of picking a vacant siteA] is the gas-phase partial pressure of
speciesA, Py, is the probability of picking & site given that ax site was first selected, akds the
reaction rate constant im’s The transition probability is on a per site basis per unit time.

as (*,*) for O, adsorption and (CQO*) for reaction are also considered. Using the transitior
probabilities for the different classes, the pair probabifityy, is computed as the product
of the probabilityP, of choosing sitex and the conditional probabilit{,,x of choosing
sitey once sitex has been picked. The probability of a class involving a single species (e.
Py), is just the fraction of sites occupied by this species (often referred to as coverage),

Q2
Py =—, 6
= o (6)
where Qy is the number of sites occupied lxyand Q+ is the total number of catalyst
(lattice) sites. For transition probabilities involving two adjacent sites of idertapdy,
the number of sites of identity havingi adjacent sites of identity is denoted as2yy;

(hereafter termed as size of clasg). The conditional probabilityyx is given by

2'4_1 i (Qxyi)

P, === 77 . 7

V/x 4, (7
Note that the summation extends over all possible classes found (four on a square la
assuming either on top or only hollow binding).

The total transition probability per unit time is then given by
Ny
[iot = Z [, (8)
i=1

wheren; is the total number of microprocesses encountered and the transition probabili
I' are defined in Table I. Subsequently, thte microprocess is selected using a randon
numberR, if

[

- j
M < Raltor < > T ©)

1 k=1

=~
1

The choice of a microprocess based on its transition probability ends the first level of
decision tree.
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Inthe second level of the decision tree, a class belonging to the chosen microprocess
lected. For microprocesses requiring one site (e.g., unimolecular adsorption or desorpt
there is a single class, except when the microprocess depends on the local microenv
ment. Examples of the latter case include an adsorption sticking coefficient which depe
on the local coverage and lateral interactions in the desorption stepAf interactions
only). The transition probability of this step is then corrected by multiplying the transitic
probability with the lateral interactions’ term (demonstrated here for first-nearest neighb

only)

4 .
_ Zi:o Qxxie iw/RT
Qx

: (10)

lXX

wherew is the interaction strength (positive for attractive interactions and negative f
repulsive interactions). If the microprocess requires two sites, first a class of eligible p:
is selected. The classes are weighted in the same way as they are in the calculation c
reaction rates. This gives a probability of selecting class wmitky pairs as

mQxym
z:i4:1[i (Qxyi + nyi)] ’

nym - (11)

and similarly for theyx class of the microprocess. The selection of a class ends the sect
level of the decision tree.

Following the selection of a class, a site or pair within that class is selected at random
the event is executed (third level of the decision tree). There are two variations of site se
tion, which exhibit quite different computational efficiencies, and for this reason, we d
cuss them next. As a first method, the site or pair selection is randomly done over
entire surface; i.e., sites or pairs are randomly selected until the chosen microproces:
be carried out [32—35]. This method resembles the ZGB algorithm with the exception
the elimination of null events. We call this algorithm t6& MC method without listS he
second method is to randomly select a site or pair from a list whose number equals the
Q of the class. The coordinates of sites or pairs of each class are stored in multidimensi
matrices, and so upon selection of one site or pair, the identification of the site or
requires no further computational work [39, 42]. In the case that a class involving a p
is chosen, first a site is randomly selected and then the adjacent sites are checked fc
second species by starting at a random neighbor of the first site and proceeding clockv
When the second species is located, both sites are updated. We call this algori@riviGe
with lists.

Once a site/pair has been selected, the microscopic process is executed, and the
sponding classes are updated. This update can be performed by rescanning the entire s
after every eventglobal updatg, which is a computationally expensive method. To savi
on computation time, bcal updatecan be implemented, in which only sites affected by
the event are updated within the radius of interactions, and the corresponding chang
the transition probabilities are computed to updatés a result, the computation time is
practically independent of the lattice size. In this local update, the sigeaddfthe altered
classes and the stored coordinates of affected sites and/or pairs are also changed. In |
ular, by modifying Nicholson'’s idea [45], screening of vectors and of the entire lattice ¢
be avoided. To achieve this, the location and coordinates of a new atom are being add
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the bottom of the list, whereas the location and coordinates of an atom being removed f
the list are swapped with those of the last atom of the list.
As a final step in the cycle, the average time elapsed during an event is computed b

1

At = ———.
Q1 iot

12)
The computation proceeds until some criterion is met. Since probabilities are conapute
priori of a MC event, each trial is in fact successful. We should note that surface diffusi
can also be included in the above algorithm in a similar way by considering it as an additio
microprocess.
For the specific example of CO oxidation, the rates for the three microprocesses are
CO adsorption:

Taco = kSOP:ycoP. (13)
O, adsorption:
Fa.0, = KZ*Pyo, PiPyys (14)
Reaction:
Iy =k (Pco Porjco + PoPeorjor ). (15)

Here P is the total gas pressure. Since the surface reaction rate constant is taken ti
infinite in the ZGB modelk; is taken here as a large number. To be consistent with the ZG
algorithm, k, for both reactants is set equal to one. Note that computation of real time
the null-event algorithm, based on Eq. (14) or Eq. (15), demands knowledge of conditio
probabilities that require scanning of the entire lattice, a computationally inefficient proce
in a null-event algorithm where these probabilities are not computed.

For the class update, the CTMC method without lists can use either a local or a glo
update. However, to explore the computational differences between algorithms, the Ic
update is used for the CTMC method without lists (otherwise the method becomes too C
intensive). The computation time of the CTMC method with lists using global update is al
compared to show the advantage of using the local update; thus, a total of four algoritt
are considered below.

SELF-CONSISTENCY OF ALGORITHMS

First, the proposed local update CTMC algorithm has been compared to literature res
to ensure numerical accuracy. Two monomer—monomer systems were considered [15,
In both cases, neither adsorbate—adsorbate interactions nor surface diffusion was consic
In addition, the NO—CO reaction mechanism on a square lattice was compared to the re
of [12]. As a final comparision, a dimer—dimer reaction mechanism was considered [1
In all cases, the agreement with reported results in the literature was very good.

As an example, Fig. 2 shows a reaction isotherm for the CO oxidation by molecu
oxygen. The gas-phase concentrations remain constant throughout a simulation anc
uniform across the surface. The surface is taken as a uniform, Pt(100) plane, with
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Surface Coverage

FIG. 2. Reaction isotherm of CO oxidation on a catalytic surface obtained with different algorithms for
lattice size of 160x 160. Poisoning with O occurs for gas-phase concentratjgps< ~0.39 and with CO
happens foyco > ~0.52. The region between these two limits remains reactive at steady state. The rate const
of adsorption of CO and Dare both set to 1. Solid lines: ZGB algorithm; squares: CTMC method with loca
update and lists; circles: CTMC method without lists. The CTMC with global update is not shown for clarity.

defects. As Ziff and co-workers (and many others) have shown, a reactive region exists
this reaction [1, 6]. The transition from an oxygen-poisoned surface to the reactive reg
is continuous (a second-order phase transition), whereas the transition from the rea
region to a CO-poisoned surface is discontinuous (a first-order phase transition). Figu
indicates that all algorithms predict the same reactive region.

Aside from steady state solutions, time-dependent situations can be a more severe te
differentalgorithms. As an example, Fig. 3 shows atransient response starting froman er
surface toward the steady state, within the reactive region. There is good agreement bet
the ZGB and the proposed CTMC algorithms (only the local update with lists is shown 1
clarity). This reaffirms the accuracy of the time integration using the null-event algorith

COMPUTATIONAL EFFICIENCY BY DIRECT NUMERICAL
SIMULATIONS FOR A CASE STUDY

To investigate the computational efficiency of the four algorithms, the specific exam
of CO oxidation is used. All the simulations were performed on a 533-MHz DEC Alpf
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FIG. 3. Transient response of an initially clean surface exposed to a gas-phase concentratioa: @45,
which is in the reactive region. The simulation is performed on a %6060 lattice. There is good agreement
between the ZGB algorithm and the CTMC method with lists and local update, even for a single run.
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FIG. 4. Comparison of computation times of various algorithms for (a) finite, fast kinetigs £f100 and
(b) infinitely fast kinetics. For the latter case, the ZGB is the fastest algorithm but it becomes very slow wt
stiff problems are encountered. The efficiency of the CTMC algorithm with lists and global update depel
logarithmically on the lattice size, whereas efficiency of the CTMC algorithm without lists depends on kineti
The other parameters are those of the ZGB model.

workstation. Figures 4a and 4b plot the CPU time required by the four algorithms to reach
same real time versus lattice size in the case of finite fast kindties 100,k P, = 1) and
infinitely fast kinetics (note that a very large rate consta(t0®?) was taken in the CTMC
algorithm). For these comparison, I/0 and initialization are not included. Furthermol
owing to differences in programming between different codes, these numbers shoulc
viewed as reasonable indicators rather than absolute values.

First we discuss scaling laws. Figure 4 shows that in all cases the null-event algorit
and the CTMC with local update algorithm have a weak dependence on the lattice size a
scanning of the lattice is required during a MC simulation (except for an initial scanning).
null-event algorithms, the CPU time required to advance the real time by a certain ama
is largely dependent on the percentage of null events performed, which is independer
lattice size. However, the fraction of null events strongly depends upon the value of r
constants, as shown in Fig. 4 and discussed later in this paper. On the other hand, the C
with global update algorithm exhibits a logarithmic dependence (when plotted on a log—
scale, a straight line is obtained) on the lattice size due to the scanning of the surface at
eventrequired to update the classes and the associated coordinates for the computation
transition probabilities. Finally, the CTMC without lists algorithm, which randomly select
sites until the MC event is successful, exhibits an interesting scaling behavior. Specifice
in the case of finite kinetics, the CPU time increases with increasing lattice size and reac
a plateau, whereas in the case of infinitely fast kinetics, it exhibits a logarithmic depende
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on lattice size. As was reported by Janséal, for these type of algorithms the lattice size
dependence changes frdD{In(Q#/z)) to O(21) when the surface reaction is fast, due to
a low probability of finding suitable sites for reaction [34].

Figure 4 indicates that the CPU times of the CTMC algorithm with local and glob.
update remain unaffected by the reaction rate constant as this does not directly affec
execution time of a MC event. In contrast, the performance of the null-event algoritt
increases dramatically from finite to infinitely fast kinetics primarily because of the lart
normalization constant. Despite the absence of null events in the CTMC algorithms,
null-event algorithm is the fastest in the infinitely fast reaction case. However, the nt
event algorithm is much slower than the local update with lists CTMC algorithm for finit
fast kinetics as shown in Fig. 4. While null events are eliminated in CTMC algorithm
the execution time, related to the number of operations involved per MC event, is ger
ally higher than that for the null-event algorithm. A detailed analysis of computer spe
and memory of three different MC algorithms was given in [46], and so here we or
briefly touch on this subject. Without taking into account the initialization of classes al
transition probabilities in the CTMC algorithm and neglecting the number of additiol
and subtractions, the CTMC with lists and with local update code involves about fi
times more operations and access to many vectors and matrices. Therefore, it is clea
the CTMC with local update code is more demanding to run for the same number
MC events but has the benefit of eliminating null events. Finally, we should remark tf
while CTMC algorithms provide real time in a transparent way, their efficiency becom
a computational impediment, especially for large lattices, unless lists of neighbors
local update are employed. It also becomes clear why scanning of the lattice for com|
ing the real time in null-event algorithms with nonlinear rates resulting from bimolecul
steps, i.e., @ adsorption, or lateral interactions, mentioned above, slows computatic
considerably.

ANALYTIC FORMULAS FOR REAL TIME ADVANCED BY MONTE
CARLO ALGORITHMS

The null-event algorithm is very straightforward to implement compared to the CTM
with local update and it is faster per MC event. Therefore, it would be interesting to der
simple criteria allowing one to choosepriori between the null-event algorithm and the
CTMC with local update. In order to analytically compare their numerical efficiencie
the ratio of the real time advanced by each code for a given number of MC events car
derived at steady state as

toun _ tst?csc sztdcsc’ (16)
tetme TcTMC

Whererr?‘lj’”s andzcrvc correspond to the average real time advanced per MC event in t
null-event algorithm and the CTMC algorithm, respectively, &§{. is the probability

of having a successful adsorption everdryc is given by Eq. (12) and29s = 1/Ta A
The task is then to compute the temporal averaged probabilities, assuming that the
scales are normally distributed with a small standard deviation. This assumption has t
verified via direct numerical simulations. Note that here the time advanced in null-eve
algorithms follows [19, 20] and differs from the conventional way of incrementing th
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time step by the inverse of the lattice size after each event. The latter method is sh
below to give equivalent results only for the ZGB algorithm. Next we discuss select
examples.

A Unimolecular Surface Reaction

We start with the unimolecular reaction as the first example. The probability of havil
a successful event, which corresponds to the sum of the probabilities of each mic
process, is

P Q e iw/RT
katYAP_i_L(l LR ki Yoo Qan ’
kmax kmax I(max QT

17)

Psucc =

wherekmax is the normalization constant of all probabilities. From the steady state me
balance we can deduce RS, = P + P = Py/2. Combining all this information,

we obtain expressions for the average real time of each algorithm,

Q —iw/RT
Pmam_&awp+mu—P>+mZﬂiﬁ——_ 1 a5
suecisuce 2kmaxka Pt yAQ* B kmang
1
TCTMC = - ) (19)

KaPLyaS, + ki (Qr — Qu) + kg Si_o Qanie /RT

leading to the following general expression for the ratio of the real times:

(aH“P+““—P)+mZuﬂfjf)
tnull — _ Zka Pt Ya P* (20)
tctme 2KmaxKa Py Ya Ps P

Note that in Egs. (18)—(20F, andQ2aai are temporal averages. Very good agreement (u
to a few percent deviation) is observed between the ratio obtained from direct numer
simulations and Eq. (20) for all simulations conducted.

To assess the computational efficiency issue, limiting cases were next studied. Indi
if one of the rate constants is much larger than the other two (in the limit ef 0),
Eg. (20) can be simplified. For examplekifP.ya > kq, then the surface will be almost
completely covered byA* at steady state. Using the mass balance, one can express
vacant site coverage to obtain the following simple expression (asstkming: ka P ya):

thul —2P. — 2(k; + kd)

=2P, = 21
tetme KaP:ya (1)
Similarly whenkg, > ka P, ya one can write (assumingnax = Ka.r)
t 2k, P
il _ Ka tya (22)
tetme Kd.r

Equations (21) and (22) compare well to Eq. (20) and, thus, to the numerical simulatic
We can therefore reach a simple conclusion that the null-event algorithm becomes \
inefficient, by several orders of magnitude, when there is disparity in rate constants. T
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general conclusion drawn for a unimolecular reaction seems, however, to contradict
results for CO oxidation shown in Fig. 4, where an infinitely fast reaction was modele
This issue will be clarified below.

Another case is when attractive interactions play a role in the efficiency of the two alc
rithms. Indeed, in the case whetg > ka P, Va butkge */RT « ki P,y and the reaction
is slow, the surface becomes almost completely covered and we have the following sinr
fication of Eq. (20):

tui — g 4w/RT (23)
tetme
Equation (23) implies that the stronger the attractive interaction, the less efficient the n
event algorithm becomes.

Front Tracking for Moving Boundaries

We should note that the CTMC algorithm with lists and local update represents a fr
tracking technique; i.e., successful events occur only in the neighborhood of the mov
interface. As an example, a moving boundary problem was analyzed by starting wit
half-covered and a half-empty surface when a phase transition occurs, leading to a f
covered surface in the case of a unimolecular reaction. To reach steady state, the null-e
algorithm needs two orders of magnitude more MC events than the CTMC with list a
local update. This result is close to the steady state efficiency predicted by Eq. (20) for
specific parameters chosen.

Infinitely Fast CO Oxidation Kinetics

Following the approach outlined above, a similar analytic formula can be derived for
catalytic oxidation of CO described by Egs. (13)—(15), using the mass balance at ste

adso __ ad%, _ orxn.
stateP32° = 2Psucc” = Plioe

g Yco P* + Yo, P* P*/* 1

PICS =37 oo, —ar (24)

2 1
T =— . 25
cme =51 (25)

We then obtain the simple relation
t 5ycoPs

nul - _ Yco . (26)

tctme 2

For this specific case, the real time advanced by the original ZGB algorithm (see Eq. (
depends only on the lattice size. By comparison to Eq. (18), it is clear though that this re
is problem specific (true only whdaax = 1). It is our experience thdt,.x is not always

easy to predict for complex kinetics with either long-range interactions or multicompone
interactions manifested in density functional theory simulations. For this reason, we prop
that akmax @adaptive scheme could be used for optimal code performance while taking i
account rare events with very largax. Furthermore, at a given CO mole fraction, the
efficiency of the two codes depends merely on the coverage of empty sites, which in-
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FIG. 5. Ratio of real times advanced by the null event algorithm and the local update with lists CTM
algorithm vs mole fraction of CO in the reactive regime for (a) finite, fast kinekics=(100) and (b) infinitely
fast kinetics. The other parameters are those of the ZGB model.

example is bounded to relatively large numbers. Figure 5 shows the ratio of times within
reactive region computed using Eg. (26) and the coverage of vacancies obtained from d
numerical simulations. In this zone, the real time advanced by the null-event algorithm «
be up to about one order of magnitude smaller than that of the local update with lists CT]
algorithm. This outperformance of the CTMC algorithm is compensated by its lower spe
per MC event, as the results in Fig. 4 indicate. As noted above, it is interesting to n
that despite the stiffness of this example (infinitely fast kinetics), the null-event algorith
performs very well. This is rationalized next.

Finite CO Oxidation Kinetics

The above derivation can be easily extended to take into account finite reaction kine
in the CO oxidation. The ratio of times between the null-event algorithm and the CTV
with local update algorithm then becomes

thul _ 5YcoPx
terme 2k +2)

Equation (27) indicates that for finite, fast kinetics, the null-event algorithm becomes co
putationally very demanding compared to the infinitely fast kinetick dsecomes large.
This is in fact shown for a set of parameters in Fig. 5 and is consistent with the observati
made in Fig. 4. The apparent paradox in computational efficiency of the null-event alg
rithm shown in Fig. 4 appears then to be caused by the specific (optimal) implementat
of the original ZGB algorithm, where an adsorption step is often immediately followed |
a surface reaction step. This implementation (a hybrid null-event algorithm) removes
stiffness of the equations. A similar situation arises when an infinite Fickian diffusion
modeled by randomly redistributing all atoms on the lattice in each MC event.

The cases studied above show that the null-event algorithm becomes very ineffic
when the problem is stiff, i.e., when widely varying time scales are involved. Analyt
formulas, such as Eqgs. (20), (25), and (27), allow a quick study of the efficiency of t
null-event algorithm over the CTMC approach. Indeed, even though the null-event algorit
is very straightforward to implement, it is not the best choice for stiff problems (rare eve
dynamics).

(27)
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COMPUTATIONAL ACCURACY

Another topic of interest is the accuracy of MC algorithms in predicting (i) converge
steady state solutions and (ii) low concentrations of surface species such as radicals. F
latter case, although radical species, such a$, @kist at very low surface concentrations,
they are crucial intermediates in the overall mechanism (seexidlation chemistry for
an example [47]). Given the small size of a lattice, it is not readily apparent whether s
low concentrations and corresponding reaction rates can be accurately captured by
averages of MC simulations.

To exploit these issues, a simple system of three reacting surface species is consid
The mechanism and corresponding rate constants are as follows:

k.
A+* < Af
K_1
B+* <k—2> B*
k_2
c+ &
k3

kg

A* = B*
ks

B* = C*.

C*

Since the rate expressions for this system are all linear (they all involve a single lattice s
the results obtain from MC simulations can be compared to the exact values obtained u
a MF model (a model system whose behavior is analytically predictable). This enable:
to test the accuracy in computing surface coverages and reaction rates by MC simulat
and to discuss implications for nonlinear kinetics of practical interest.

As a first example, the transient response of an initially clean surface was explored.
kinetic parameters are chosen so that consumptidharfid desorption of are relatively
fast, resulting in low coverages. Figure 6 shows that MC results from a single run :
inaccurate at low surface concentrations, in this case, at short times. Interestingly eno

i e

g 107 =
e B*
z " MF
8 l[)"" [ MC
g # o ave. MC
‘!5 2ee=T attice resolution
v 107

1 1

| 1
104 108 102 10t 10° 10!
Time [s]

FIG.6. Transientresponse of a clean surface toward steady state for a linear reaction mechanism and a |
size of 120x 120. The small lattice limits the accuracy of a single MC simulation for surface coverages below
lattice resolution. Circles correspond to MC data, squares correspond to temporal averaged (over 100 indepe
runs) MC data for the surface coverage ¢f 8nd solid lines correspond to the MF model. The parameters for thi
simulation ard(l =2, k,l =0.01, k2 =1, k,g = 0.02, k3 =3, k,3 =10, k4 =1, k5 =10, Ya = 0.8, Yg = 0.1,
andyc = 0.1.
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deviations at short times of a single run do not propagate to longer times, as usually hap
with integration of deterministic ordinary differential equations. Using a single simulatiol
concentrations above the lattice resolution approach the MF values. However, the deviat
below the resolution limits of the small lattice require substantially more rOg&@) for
the average to approach the MF value as shown with the squares in Fig. 6.

The effect of limited lattice size has been further exploited for a second set of conditio
where all rate constants are fixed exdeptvhich ranges from 1% to 1(°. By increasings,
the surface concentration & decreases, and at high values of the reaction rate consta
speciesB* is in quasi-steady state and its concentration becomes very low (the num
of B* molecules basically varies between 0 and 1 in various surface snapshots). Ur
such conditions, the rate of reaction also varies between zero and a finite value, shov
large fluctuations. We have previously shown that stochastic effects can cause signifi
deviations in results of small size systems from continuum conservation equations [42].
further explore this issue for lattice MC next, when the species concentrations fall bel
the resolution threshold.

One method of calculating rates from MC simulations is to evaluate an arithmetic me
of instantaneous transition probabilities, given by

nooa

(fyy = 2t 11O (28)

n

wherenis the number of snapshots used. However, under conditions where large fluctuati
in rates occur between consecutive events, the transition probabilities andtthvesry
significantly. It is therefore expected that Eq. (28) will not provide accurate estimates
rates. Another method of calculating rates is to use a time-weighted average of the trans
probabilities, given by

f f‘idt n M (K
D S P
() = =X 1n o 2k ; < (29)

whereM,; (k) is the number of events of microprocess of typecurring over timey (easily
counted in a simulation) analis now the number of intervals over which an average rat
is computed. If the time stept is constant, then Eq. (29) reduces to Eq. (28). Figure 7
indicates that a%s increases, Eq. (28) becomes inaccurate, whereas Eq. (29) rema
accurate. This fact can be exploited to calculate the surface coverage of intermediate sp
at low coverages. Using the rate calculated from Eq. (29), the surface coverByeaf

be determined from

Og) = 30
(0B) ke (30a)
compared to a simple arithmetic mean
1 08(K
(0s) = 72"—1” 500, (30b)

Figure 7b shows a comparison of the different methods for calculating the low concentrat
of the intermediate species. Using the method proposed above (Eg. (30a)), the concentr
of B* can be determined to a good degree of certainty, even from a single run.
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FIG. 7. Comparison of average transition probabilities (a) and coverage of intermediate species (b) ve
the reaction rate constaky. The parameters for this simulation dse= 2, k_; = 0.01,k, = 0.01,k_, = 0.002,
ks =100,k 3 = 1,k, = 0.01,y, = 1,ys = 0.0, andy: = 0.0. The time-weighted average transition probabilities
provide a more accurate method of calculation compared to the arithmetic mean when large fluctuations in tran:
probabilities occur between events. Despite a resolution threshold caused by finite lattice sizes, the concentr
of key intermediates can accurately be computed (see text).

As another example, the CO oxidation problem was considered. For the adsorp
rates of CO and @ the agreement between Eg. (28) and Eq. (29) is good (0.001% f
CO adsorption and 0.8% for oxygen adsorption). However, for the surface reaction r
Eq. (28) resulted in large errors due to the huge reaction rate constant of the surface reac

For the example of CO oxidation, the convergence of steady state equations was als
amined. At steady state, the rates involving a surface species multiplied by its stoichiome
coefficients (the residual) should be equal to zero. Fot,@@ normalized residual is

(Tco) — (TR)

. x 100% (31)
(T'co)

The normalized residual for oxygen is

|2<f02> - <fR>|

<f02>

Using the rates obtained from Eq. (29), the steady state residuals are less than 1%.
numbers are typically larger than the corresponding counterparts of continuum t
diffusion—reaction solvers based on Newton'’s technique. While better convergence is |
sible, prohibitively large lattices or parallelization may be required to achieve this.

x 100% (32)
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CONCLUSIONS

We have presented a general, efficient CTMC algorithm, applicable to complex surf:
reaction mechanisms, and discussed two additional, frequently used ones. Using the exa
of the CO oxidation, the computational efficiency of various algorithms was compared
the same integration time rather than the same number of MC events. Simple formulas v
also derived to compare real times between the null-event algorithm and the CTMC w
local update algorithm for a unimolecular reaction and the CO oxidation reaction. Final
accuracy issues related to lattice size resolution were addressed. The main conclusior
summarized as follows:

e Using a single microprocess, such as CO adsorption, real time can be introduced
the ZGB algorithm and null-event algorithms in general.

o Null-event algorithms can become extremely inefficient compared to the CTMC alg
rithm with lists and local update when stiff problems are encountered.

e These two algorithms show a slight dependence on the lattice size compared to
CTMC with global update or the CTMC without lists algorithm. This is an interesting
feature if larger lattice size simulations are required to obtain accurate solutions.

e Using time-weighted averages, the reaction rates and low surface coverages (b
the resolution of the lattice size) can be computed accurately; on the other hand, sin
arithmetic mean estimations can lead to wrong results in coverage using a single run.
behavior indicates that application of CTMC algorithms to realistic reaction schemes, wh
concentrations of intermediates are low, is feasible.

The computational efficiency of the proposed algorithm makes it an attractive alternat
to other available algorithms. Aside fromits speed, it can also be readily adapted to arbitre
complex reaction mechanisms. This versatility can make it a more desirable choice t
null-event algorithms.
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